(1) sin2/ cos + cos = (sin2+cos2)/cos
= 1/cos [sin2+cos2 = 1]
= sec [1/cos = sec]
Hence proved.
(2) cos2 (1 + tan2 ) = cos2 +sin2 [cos2 ×tan2 = cos2 ×sin2/cos2 = sin2]
= 1 [sin2+cos2 = 1]
Hence proved.
(3) √[(1-sin)/(1+ sin)] = √[(1-sin)/(1+ sin)]×√[(1- sin)/(1- sin)] [rationalizing denominator]
= √[(1-sin)2/(1-sin2)]
= √[(1-sin)2/cos2 [1-sin2 = cos2 ]
= (1-sin)/cos [taking square root]
= (1/cos)-(sin/cos)
= sec-tan [1/cos = sec , sin/cos = tan
Hence proved.
(4) ( sec – cos)( cot + tan) = LHS
∵sec = 1/cos , cot = cos/sin , tan = sin/cos
LHS = (1/cos)-cos][(cos/sin)+(sin/cos)]
LHS = [(1-cos2)/cos][( cos2+sin2)/(soncos)]
= [sin2/cos][1/sincos] [∵1-cos2 = sin2]
= sin/cos2
= sectan [sin/cos = tan, 1/cos =sec]
= RHS
Hence proved.
(5) cot + tan = (cos/sin) +(sin/cos) [∵cot = cos/sin , tan = sin/cos]
= (cos2+ sin2)/sincos
= 1/ sincos [∵cos2+ sin2= 1]
= cosecsec [1/ sin = cosec , 1/cos = sec]
Hence proved.
(6) 1/(secθ-tanθ) = 1/(secθ-tanθ) × (sec + tan)/(sec+tan) [rationalising denominator]
= (sec+tan)/( sec2-tan2)
= sec+tan [∵sec2-tan2 = 1]
Hence proved.