(1) sec(1 – sin) (sec + tan) = (sec-secsin)(sec + tan)
= (sec-tan)(sec+tan) [secsin = sin/cos = tan]
= sec2-tan2
= 1 [1+tan2 = sec2]
Hence proved.
(2) (sec + tan) (1 – sin) = [(1/cos)+(sin/cos)](1 – sin)
= [(1+sin)/cos]×(1-sin)
= (1-sin2)/cos
= cos2/cos
= cos
Hence proved.
(3) sec2 + cosec2 = (1/cos2) +(1/sin2)
= (sin2+cos2)/sin2 cos2
= 1/ sin2 cos2 [sin2+cos2 = 1]
= sec2× cosec2
Hence proved.
(4) cot2 – tan2 = (cosec2-1)-(sec2-1) [∵cot2 = cosec2-1 and tan2 = sec2-1]
= cosec2-1-sec2+1
= cosec2-sec2
Hence proved.
(5) tan4 + tan2 = tan2( tan2 +1)
= tan2sec2 [∵tan2 +1= sec2]
= (sec2-1) sec2 [∵tan2 = sec2-1]
= sec4– sec2
Hence proved.
(6)[ 1/(1- sin θ)]+[1/(1+ sinθ)] = [(1+ sinθ)+ (1-sinθ)]/ (1+ sinθ)×(1-sinθ)
= [1+ sinθ+ 1-sinθ]/ (1- sin2θ)
= 2/cos2 [1- sin2θ = cos2]
= 2sec2 [∵1/ cos2 = sec2]
Hence proved.